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Summary

Given two time series X and Y, their mutual information, I(X,Y)=I(Y,X), is the average number

of bits of X that can be predicted by measuring Y and vice versa. In the analysis of observational data,

calculation of mutual information occurs in three contexts, identification of nonlinear correlation,

determination of an optimal sampling interval particularly when embedding data, and in the investigation

of causal relationships with directed mutual information.

In this report a minimum description length argument is used to determine the optimal number of

elements to use when characterizing the distributions of X and Y. However, even when using partitions of

the X and Y axis indicated by minimum description length, mutual information calculations performed

with a uniform partition of the XY plane can give misleading results. This motivated the construction of

an algorithm for calculating mutual information that uses an adaptive partition. This algorithm also

incorporates an explicit test of the statistical independence of X and Y in a calculation that returns an

assessment of the corresponding null hypothesis.

The previously published Fraser-Swinney algorithm for calculating mutual information is

described. This algorithm includes a sophisticated procedure for local adaptive control of the partitioning

process. When the Fraser and Swinney algorithm and the algorithm constructed here are compared, they

give very similar numerical results. Detailed comparisons are possible when X and Y are correlated

jointly Gaussian distributed because an analytic expression for I(X,Y) can be derived for that case. Based

on these tests, three conclusions can be drawn. First, the algorithm constructed here has an advantage over

the Fraser-Swinney algorithm in providing an explicit calculation of the probability of the null hypothesis

that X and Y are independent. Second, the Fraser-Swinney algorithm is the more accurate of the two

algorithms when large data sets are used. With smaller data sets, the Fraser-Swinney algorithm reports

structures that disappear when more data are available. Third, the algorithm constructed here requires

about 0.5% of the computation time required by the Fraser-Swinney algorithm.
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I. Introduction

Given two time series {X}={Xlx 2 , ..... XND} and {Y}={Y1 ,Y2," ..... YND}, their mutual

information, I(X,Y), is the average number of bits of {X} that can be predicted by measuring {Y}. It can

be shown that this relationship is symmetrical, I(XY)=I(Y,X). A mathematical definition of mutual

information and a demonstration of this property is given in the first appendix. This appendix includes a

summary of the principal mathematical properties of I(X,Y). A more systematic presentation is given in

Cover and Thomas (1991). In the analysis of observational data, calculation of mutual information occurs

in three contexts, identification of nonlinear correlation, determination of an optimal sampling interval

particularly when embedding time series data, and in the investigation of causal relationships with

directed mutual information.

Mutual information can be used to identify and quantitatively characterize relationships between

data sets that are not detected by commonly used linear measures of correlation. Figure 1 recapitulates an

example shown in Mars and Lopes da Silva (1987) and displays three data set pairs. The first shows xi

when xi =-3 to +3 in steps of 0.0006 plotted against s1 , a random normally distributed variable with zero

mean and unit variance. The second element of Figure 1 shows xi versus xi + .2i where 6i is the

previously used random variable. In the third example of Figure 1, yi = x? + .2si. Four measures were

calculated with ten thousand element data sets. The first was the linear correlation coefficient r (Press, et

al., 1992). The probability of the null hypothesis of zero linear correlation also was calculated. A small

value of PNull indicates a high degree of linear correlation. The Spearman rank order correlation rs and

the probability of the corresponding null hypothesis of non-correlation was calculated. If PNujj is small

and rs is positive, a positive correlation has been detected. If PNu11 is small and rs. is negative, anti-

correlation has been detected. Kendall's tau, a nonparametric measure of correlation, and its associated

PNu1I were calculated. This set of calculations also incorporated estimation of mutual information

between {X} and {Y} using an algorithm that will be described in a subsequent section. That section also

includes a description of the procedure used to calculate the probability of the null hypothesis of statistical

independence.
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Figure 1. Data sets used in the correlation study of Table 1. In each case, x varies from -3
to +3 in steps of .0006. A. y1 = si, a normally distributed random variable with zero

mean and unit variance. B. Yi = xi + .2ci C. Yi =4x +.2s 1

The results are shown in Table 1. In the case of normally distributed random numbers, all four

measures behave in a manner that is consistent with our quahitative understanding of the word correlation.

Measures r, rs, t, and J(X,Y) are small and the probability of the null hypothesis of zero correlation or,

in the case of mutual information, statistical independence is high. Similarly, in the case of calculations

with linearly correlated noise the results are consistent with expectations. The correlation measures are

very nearly equal to one and the value of mutual information is high. The corresponding probability of the

null hypothesis is numerically indistinguishable from zero in each case.

The results obtained in the case of parabolic correlation merit closer inspection. The first three

measures r, rs, and t are small and the corresponding PNu1] values are high, which indicates that no

correlation was detected. In contrast, the value of mutual information is high, essentially equal to that

obtained using linearly correlated data, and the probability of the null hypothesis of statistical

independence is zero. Upon reflection it is seen that this is as it should be. Mutual information, I(X,Y), is

the average number of bits of y that can be predicted by measuring x. Though the relationship between

4 1 1 1 15



{X} and {Y} in the third example is not linear, the relationship does confer a significant predictive

capacity. This is reflected in the high value of I(X,Y) and in the low value of PNull .

Table 1. Correlation Analysis

Pearson Pearson Spearman Spearman Kendall's Kendall's I(X,Y) I(X,Y)
r PNu1I rs PNull Tau PNuOl PNuO]

Normally
Distributed -.0037 .7112 -.0040 .6854 .0027 .6845 .1356 .7851

Random

Linearly .9934 0. .9936 0. .9270 0. 2.9186 0.
Correlated

Parabolically .0001 .9912 <10- 4  .9928 <10- 5  .9989 3.0304 0.
Correlated

Mutual information is thus seen to be a nonlinear generalization of the concept of linear

correlation. Beginning with the pioneering work of Callaway (Callaway and Harris, 1974) and Mars and

Lopes da Silva (Mars, et al., 1985, 1987), mutual information has been used in studies of nonlinear

correlations in multichannel EEGs. The investigations indicate that mutual information estimates can be

used to discriminate between focal and generalized seizures. Additionally, in the case of focal seizures,

the method can be used to identify the location of the epileptogenic focus (Mars, et al., 1985).

Generalizations of the procedure in the form of directed mutual information will be considered presently.

Mutual information estimates also can be used to determine an appropriate sampling interval, Ts,

which is the time between consecutive measurements of a time series. Many of the calculations presented

here will be calculations directed to this question. The selection of an appropriate sampling interval is an

important consideration when the quantitative methods of dynamical analysis are applied to time series

data. On first consideration, one might suppose that the smallest possible Ts would be the best option.

While this may be a reasonable approach during data acquisition, this strategy can fail during analysis

because calculations with over-sampled data can produce misleading results (Rapp, et al., 1993).

Historically, calculation of the autocorrelation time, the time required for the autocorrelation function to

drop to l/e of its initial value, has been used to establish an approximate sense of the time scale

6



corresponding to significant changes in a time series' behavior. However, as we have seen in the

preceding calculations, linear measures can give an incomplete characterization of behavior. This

recognition has motivated the calculation of lagged mutual information.

Let {X} be the original time series, and let time series {Y} be the same time series shifted by

time a lag, that is, Yi = Xi+Lag. The mutual information I(X0 ,Xi+Lag) is then calculated. This process is

repeated, and I(Xi, Xi+Lag) is determined as a function of Lag. In order to get the most new information

from a measurement, we want to take the next measurement when there is maximum uncertainty in the

relationship between {X} and {Y}. Recall that I(X,Y), which is symmetrical I(X,Y)=I(Y,X), is the

average number of bits of Y that can be predicted by measuring X and vice versa. Therefore, the

maximum uncertainty in the relationship between {X} and {Y} will occur at a minimum of

I(Xi, Xi+Lag). This indicates that Ts should be set equal to a value of Lag that gives a minimum of

I(Xi,Xi+Lag). It can be further argued, for example see Fraser and Swinney (1986), that among the many

different minima of I(Xi,Xi+Lag), the sampling interval should correspond to the first minimum of

I(Xi,Xi+Lag). This is particularly true when, as is often the case, chaotic systems are being investigated

since the turbulent mixing of a chaotic system will cause an unacceptable loss of structure if Ts is too

large.

Estimation of mutual information is often required when embedding dynamical data. In the

simplest case, an analysis based on embedded data begins with a scalar time series {X}. The elements of

{X} are then used to form an m-dimensional set {Z} E 91 m with the construction

Zj= (x , Xj+Lag, Xj+2Lag, ..... Xj+(m-1)Lag)

The analysis then continues with the investigation of the geometrical properties of {Z}. The motivation

for this approach follows from the Takens-Mafi6 embedding theorem (Takens, 1980; MafiM, 1980), which

shows that if the conditions of the theorem are met, then an intimate relationship exists between {Z} and

the dynamical system which generated the observed times series {X}. This theorem requires the

assumption that set {Z} is dense. This can never be satisfied with finite data sets. However, while

recognizing the approximate nature of the analysis, an investigation of {Z} can in some instances provide

significant information about the underlying generator. A crucial operation difficulty is encountered when

embedding finite observational data sets. Embedding parameters m and Lag must be chosen. This choice

is crucial to the success of the subsequent analysis. Inappropriate choices of m and Lag can result in the

spurious indication of structure in random data (Rapp, et al., 1993). Conversely an inappropriate
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specification can result in the unnecessary failure to identify structures that are indeed present in the time

series. Several candidate criteria for selecting m and Lag have been proposed. An incomplete review of

the very large embedding criterion literature is given in Cellucci, et al (2003). Fraser and Swinney (1986)

proposed that the best value of Lag to use in an embedding is given by the first minimum of the

I(Xi, Xi+Lag) versus Lag function. This proposal is supported by Abarbanel (1995). To a limited degree

the Fraser-Swinney proposal was confirmed in a recent comparative study of embedding criteria

(Cellucci, et al., 2003). It should be noted, however, that this comparison was limited to four criteria and

is therefore not definitive.

Mutual information calculations are also important in the characterization of causal relationships

between two time series. Correlation measures, both linear and nonlinear, quantify the degree of

correlation between {X} and {Y} under their respective definitions, but they do not identify causal

relationships in the sense of identifying which variable drives the other, if indeed such a relationship

exists. The quantification of causal relationships is a problem that is frequently encountered in the

investigation of econometric data. Historically the most commonly employed measure of causality in

economics research is Granger Causality (Granger, 1969; Kaminski, et al., 2001) which is based on the

construction of bivariate autoregressive processes. A complementary procedure for the investigation of

causal relationships can be constructed by examining delayed mutual information functions. Stated

informally, if a measurement of variable x can predict the future of y more effectively than measurement

of y can predict x, then, in that limited sense, in an isolated system variable x can be said to drive variable

y. Depending on the complexity of the interacting variables being investigated, causal relationships can be

complex functions of time. I(Xi, Yi+) is the average number of bits of y at time t +± that can be

predicted by measuring x at time t. Conversely, I(Yi,Xi,+) is the average number of bits of x at time

t + c that can be predicted by measuring y at time t. Xu, et al (1997) describe I(Xi ,Yi+,) as the rate of

information transmission from variable x to variable y at a delay of u. Several investigators have used

this technique to assess the time dependence of between channel information transfer in multichannel

EEGs (Inouye, et al., 1983, 1993; Lopes da Silva, et al., 1989; Xu, et al., 1997; Chen, et al., 2000).

II. Calculating I(X,Y) with a uniform partition of the XY plane

Let {X} = {X1,x 2 , x3 ...... XND} and {Y} = {Y1,Y2,Y3 ...... YN.  } be time series of equal length.

Suppose that the distributions of X and Y, Px (i) and Py (j) are approximated by histograms of Nx and
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Ny elements that uniformly divide the range xmin to Xmax and Ymin to Ymax. Though it is commonly

the case, it is not necessary for NX to be equal to Ny. Indeed, in some instances Nx = Ny is

inappropriate. Suppose that signal X was digitized with 8 bits and that signal Y was digitized with 16 bits.

Should this be the case, a Y histogram with a greater resolution is justified. A uniform partition from

Xmin to Xmax and Ymin to Ymax makes the calculation sensitive to outliers. This potentially serious

deficiency and the choice of NX and Ny will be addressed presently. Let Oxy(i,j) denote the

occupancy of the (ij)-th element of the partition of the XY plane that extends from Xmin to xmax on the

X axis (Nx equal elements) and from Ymin to Ymax on the Y axis (Ny equal elements). Consider the

observed pair (Xk,yk), k = 1,....... ND. Ox(i,j) is incremented by one if xk is in the i-th partition

element of the X axis and Yk is in the j-th element of the Y axis partition. This process continues for all

(Xk,Yk) pairs. Pxy(i,j) is determined by normalizing the occupancy against the number of paired

observations; Pxy (i, j) = Oxy (i, j) / ND. The joint probability distribution, Pxy (i, j), has NxNy values,

many of which may be zero. A discrete approximation of I(X,Y) is computed using the relation derived in

Appendix 1.

NX Ny PxY (i, j)
I(XY) = I Pxy(i,j)log2

i=l j=l x(P j

where there is no contribution to the sum if PXy (i, j) is equal to zero.

While easy to implement, this procedure for estimating mutual information contains a serious

deficiency. The calculation will be sensitive to the choice of Nx and Ny. An example is shown in the

next diagram. I(Xi, Xi+Lag) is plotted as a function of Lag, for data generated by the Lorenz system.

dx / dt = c((x - y)

dy / dt = -xz + rx - y

dz / dt = xy - bz

where a = 10, b=8/3 and r=28. Ten thousand values of the x variable of the Lorenz system were used in

calculations where Nx = Ny =NElements equally sized elements partition each axis. In these

calculations, a well characterized minimum of I(Xi, Xi+Lag) appears at Lag=1 8 when NElements = 50.

However, as the diagram indicates, this minimum is lost if other values of NElements are used. Since the

location of the first minimum of the I(Xi ,Xi+Lag) versus Lag is frequently the object of a mutual

information calculation, this result argues against the common practice of selecting Nx and Ny

9



arbitrarily. A rational basis for selecting NElements can be constructed using a minimum description length

argument.

5

4

0
4-

• 1"Ft 2-

0 20 40 60 80 100 120 140 160 180 200
Lag

Figure 2. I(Xj,Xj+±g) as a function of lag. Ten thousand consecutive values of the

Lorenz x variable were used. In the case of the top curve, NElements = 50. The value of

NElements decrease in steps of ten to the lower curve where NElements = 10.
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The preceding example indicates that the value of mutual information can be sensitive to the

number of elements used when a uniform partition of the XY plane is implemented. We must therefore

address the question what is the optimal number of elements? This is a restatement of the histogram

problem in the specific context of mutual information calculations. The histogram problem is: given a

scalar data set X = {x1 , x 2 ,...... Xn }, how many elements should be used to construct a histogram of X?

If there are too many elements, each element has an occupancy of 0 or 1 and fails to identify the

distribution of X in a meaningful way. Similarly, if there are only a small number of elements (consider

the limiting case of a single element), the structure of the distribution cannot be discerned. A successful

answer therefore lies at an intermediate value. The histogram problem has a long history and has been

examined by several investigators (Bendat and Piersol, 1966 page 284; Cocatre-Zilgien and Delcomyn,

1992; Mosteller and Tukey, 1977 page 49).

Tukey suggest that n1 2 , where n is the number of observations, is the best choice. Bendat and

Piersol (1966) recommended 1.87(n _1)0.4. A systematic theoretical development of the question is given

by Rissanen (1989, page 76). Rissanen uses a minimum description length argument to conclude that the

optimal value of the number of elements to use in a histogram is the value of m, pt, that gives a

minimum value of the stochastic complexity, F(m).

F(m) = n 19 + lg 2 + log2 112(
(A nl,... ,n m)+19 n

n is the number of data points in set X. R is the range of X, R = Xmax - Xmin . m is the number of

elements in a uniform partition, A is the resolution of the measurement of x, and n,n 2 ,z...nm are the

occupancies of each element in the partition. The multinomial coefficient is

Inl n!
nl,...,nm nl!n 2 !...nm!

and the binomial coefficient is
(n+m-1) (n +m-1)

n n! (mn - 1)!

The value of A only shifts the function by an additive constant. It will not affect the value of mopt. If the

only object of the calculation is to determine mopt, A can be set equal to 1. Base two logarithms are used

11



throughout the development in Rissanen, but again if the sole object is a determination of mopt, the

choice of base is immaterial.

F(M) was calculated using the Lorenz data used to construct Figure 2. A minimum was obtained

at mopt = 32. Using this value for the number of elements in the uniform partition of the X and Y axes in

a calculation of I(Xi, Xi+Lag) gives a mutual information versus lag function with a well characterized

first minimum at Lag-=21. This analysis therefore would seem to provide a rational procedure for

calculating I(X,Y). Application to the R6ssler equations, however, shows the limitations of this approach.

The R6ssler equations used in the next calculations were

dx/dt---y-z

dy/dt--x+.2y

dz/dt=.4+xz-5.7z

Using x-axis data generated by this system, a calculation of the Rissanen F(M) gives a minimum at

M=40. A forty-element partition of each axis was used in the subsequent calculations of mutual

information as a function of Lag for x, y and z-variable data. The resulting mutual information versus Lag

functions are shown in Figure 3. It is seen that while x-axis and y-axis data give functions with first

minima that are roughly coincident, the function obtained with z-axis data is very different.

12
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Figure 3. Mutual information I(Xi, Xi+Lg) as a function of Lag for R6ssler data. A

uniform partition of the XY plane was constructed using forty elements on each axis. One
hundred thousand data points were used. The top curve was obtained with variable x. The
curve immediately below it was constructed with variable y data. The lower curve was
calculated with variable z data.

The cause of the differences in the z-variable mutual information function in Figure 3 can be

identified by examining a three dimensional construction of the trajectory using all three variables (Figure

4). The activity of the R6ssler system is confined predominantly to the z - 0 plane. At irregular, chaotic

intervals there is an abrupt excursion into the z>0 domain.
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Figure 4. Three-dimensional construction of the R6ssler attractor using ten thousand
point x, y and z vectors generated using the differential equation and parameter values
specified in the text.

An examination of the histograms formed with x, y and z data (Figure 5) shows that while the x and y

values are approximately uniformly distributed, most of the activity of the z variable is confined to

[0,.375] even though the maximum value of z is approximately 15.
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Figure 5. Histograms constructed with Rb~ssler data. The histograms were formed with

the ten thousand point vectors used to construct the three dimensional attractor of Figure
4. Note that the ranges of the vertical axes are different.

III. Statistical assessment of I(X,Y) calculations

The results with R6ssler data suggest that the calculation of mutual information using a uniform

partition can produce misleading conclusions. An alternative to uniform partitioning should, therefore, be

sought. An additional and arguably more important issue should also be addressed. The calculations of

mutual information should be constructed on a sound statistical foundation. When computing I(X,Y) we

should incorporate a statistical test of the confidence of our rejection of the null hypothesis that X and Y

are statistically independent. I(X,Y)=O if X and Y are statistically independent. In practice, we wish to

know if a computed nonzero value of I(X,Y) is statistically significant. Therefore, given time series X and

Y of length ND, our object is to assess the null hypothesis that X and Y are statistically independent.

The null hypothesis of statistical independence can be addressed in the following manner.

Suppose that the distributions of variables X and Y are approximated by histograms of NX and Ny

elements. In most applications NX = Ny, but this is not required. Ox (i) is the observed occupation

15



number of the i-th bin of the variable X histogram. Oy(j) is assigned analogously. Oxy(ij) is the

observed occupation number (a positive integer, not a fractional probability) of element ij of the XY

partition. There are NxNy values of Oxy (i, j). Many of them may be zero. Exy (i, j) is the expected

occupancy of element ij of the XY partition given the assumption that X and Y are statistically

independent.

Exy (i, j) = NDPX (i)y (j) = ND 0~~i lO( -Ox (iO y (J)
E ND ND J ND

where it should be noted that Exy (i, j) is not necessarily an integer and ND is the number of x, y pairs.

Following conventional statistical practice (Cochran, 1954; Ott, Longnecker and Ott, 1998), we

require Exy(i,j) Ž 1 for all elements of the partition and Exy(i,j) > 5 for at least 80% of these elements.

This requirement provides a rational basis for selecting the number of histogram bins Nx and Ny. If the

condition is not met, Nx and Ny should be decreased. If the condition is satisfied for the initially

selected values of Nx and Ny, then they can be increased and the calculation of Exy(i,j) is repeated.

This process is repeated until the highest values of Nx and Ny consistent with the constraints on

E xy (i, j) values are determined. In most applications Nx = Ny, and this calculation is straightforward.

Once the final values of Nx and Ny are determined and the corresponding values of Oxy (i, j)

and Exy (i, j) are calculated, the value of X2 is calculated.

X 2 N x NY {Oxy (i'J) - EXy (i' j)) 2

i=l1 E~ Xy (i, j)

The condition Exy (i, j) Ž_ 1 for all values of ij ensures that X2 is well behaved. In addition to X2 , v, the

number of degrees of freedom, is also computed.

v = (NX - 1)(Ny - 1)

Using X2 and v , the probability of the statistical independence null hypothesis is computed.

PNull = probability of the null hypothesis = ,-

Q is the incomplete gamma function.
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Q(x, y) =1- JettXldt 1 -texttXdt F(x)= fe-ttX-ldt
F(X) y 0

IV. Calculation of I(X,Y) using an adaptive XY partition

As previously outlined, we propose that calculation of mutual information should be statistically

validated by application of a X2 test of the null hypothesis of statistical independence. Additionally, the

partition of the XY plane, which is used to calculate the joint probability distribution Pxy, should satisfy

the Cochran (1954) criterion on the expectancies Exy. Specifically, we require Exy(i,j) Ž1 for all

elements of the partition and Exy (i, j) _> 5 for at least 80% of the elements of the partition. In the

following algorithm, we use the expectation criterion to construct a nonuniform XY partition. This

procedure has two advantages over the use of a na've uniform partition. First, it reduces sensitivity to

outlying values of X and Y. Second, it provides an approximation of the highest partition resolution

consistent with the expectation criterion.

Let ND denote the number of X, Y pairs. Nx is the number of elements used in the partition of

the x axis. Ny is the number of elements used to partition the y axis. For this implementation of the

algorithm, Nx and Ny are equal and denoted by the number of elements NE. We stress that NE is the

number of elements in the partition of an axis. It is not the number of elements in the XY plane, which is

NE. The specification NE = Nx = Ny is particularly appropriate when data set Y is a lagged version of

data set X. NE is determined by the following procedure: after determining Xmin and xmax, the x axis is

partitioned into NE elements so that there is an equal occupancy in each element. This partition is

nonuniform in the sense that the widths of each element are adjusted individually in order to meet the

requirement of uniform occupancy. Let Px(i) denote the probability of X's membership in the i-th

element of the x axis partition. We have

Px(i) = I/NE

Similarly, after determining Ymnn and Ymax, the y-axis is partitioned into NE elements so that there is an

equal number of occupants in each y axis element.

Py(j) =I/NE
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Under the null hypothesis of statistical independence, the expected occupancy of the (ij)-th

element of the partition of the XY plane is

NDExy (i, j) = NDPx (i)Py (j) = ND

NE

NE is determined by finding the largest possible value that gives Exy(i,j) __ 5 for all elements of the

XY partition. This criterion is therefore more conservative than the Cochran (1954) criterion that requires

Exy to be greater than five in at least 80% of the elements. NE is the greatest integer such that

NE<(N 
1/

PXy (i, j) is calculated using this partition. Mutual information is calculated with the previously derived

formula.

NE NE p xy(i,j)
I(X, Y) = I PxY (i, j) logj

i=1 j=1 Px(Py()J

x2 and PNu11 are calculated as previously described. If ND is exactly divisible by NE, then the formula

for mutual information simplifies and becomes

NE NE

I(X, Y) = E - P, (i, j) log{Npxy (i, j)}
i=1 j=1

However, when ND is not a multiple of NE, elements of the x axis and y axis partitions do not have

exactly identical probabilities equal to 1/NE, and the preceding formula should be used. If the Cochran

expectation criterion is satisfied (and by construction it will be) and the null hypothesis is not rejected,

then, to the extent that can be determined by calculations with this algorithm, the two data sets are

statistically independent. Under these conditions, reporting a nonzero value of mutual information cannot

be justified. Therefore, in cases where the null hypothesis is not rejected, the algorithm returns I(X,Y)=O

rather than the numerical value produced by the preceding formula.

The application of this procedure to the R6ssler data is shown in Figure 6. In contrast with the

results of Figure 3, which were obtained with a uniform partition, it is seen that the first minimum of the

mutual information versus lag functions obtained with x, y and z-variable data approximately coincide

when the adaptive partition is used. The probability of the null hypothesis was calculated for each value

of Lag. With these data, PNun was found to be numerically indistinguishable from zero for each value of

Lag. Since the data set Y used in these calculations of I(X,Y) is a lagged version of data set X, this

rejection of the null hypothesis is anticipated.
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Figure 6. Mutual information as a function of lag using R6ssler data. The data used in
Figure 3 were used in these calculations. NData = 100000. Viewed at Lag=18, the curves
from the x, y and z variables have the top-down order of x to z to y.

In the algorithm constructed here, the number of elements in the X axis partition is equal to the

number of elements in the Y-axis partition. This number is denoted by NE. In this algorithm NE is

determined by the Cochran criterion. Once NE is specified, the boundaries of the partition's elements are

adjusted so that each X-axis element and each y axis element have the same occupancy. Pxy (i, j) and

I(X,Y) are calculated using this partition. Suppose that time series X is transformed by a monotone

increasing function hx where hx may be nonlinear. Similarly suppose that time series Y is transformed

by a monotone increasing function h y. The adaptive partition algorithm for calculating mutual

information is then applied to calculate I(hx(X),hy(Y)). These transforms are monotonic. Therefore

while the values are changed, the relative ordering of elements in the time series are invariant. When the

algorithm is applied, the location of the boundaries of axis partitions will be shifted by the occupancies of

each element will be unchanged, that is, Px (i), Py (j), and Pxy (i, j) are unchanged. Therefore the value

of mutual information is unchanged. This is summarized in the following result.
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Theorem

Let X and Y be time series of equal length. Let h x and h y be monotone increasing functions. If mutual

information is calculated using the adaptive partition algorithm, then

I(X, Y) = I(hx (X), hy (Y))

Fraser and Swinney (Fraser and Swinney, 1986; Fraser, 1989) have constructed an alternative

adaptive partition algorithm. It is described in the next section.

V. The Fraser-Swinney Algorithm

As in the case of the previous algorithm, the calculation is directed to an estimate of the discrete

form of the mutual information integral.
NX Ny x0,)

I-,' Y) =i E E P0 )(i, j_)i=l j= P ( p (i)PY (j)J

Numerical approximation of the joint probability distribution PxY constitutes the most demanding

element of the computation. The Fraser-Swinney algorithm (Fraser and Swinney, 1986) does this by

constructing a locally adaptive partition of the XY plane.

As a preliminary exercise leading to the construction of the algorithm, consider a sequence of

partitions Go, G1, G2 . . . . . ..... , Gm. Each partition is a grid of 4m elements generated by dividing the

X and Y axis into 2 m equiprobable elements, that is the boundaries on the X and Y axis are positioned so

that Px = P, = 1/2m for each element of the partition. Go is the entire XY plane. Rm(Km) denotes an

element of the partition Gm. In this notation index Km runs from 1 to 4m. Pxy(Rm(Km)) is the value

of the joint probability distribution on element Rm (Kin).

Pxy(Rm(Kn)) = N(Rr(Km))/NO

where N(Rm(Km)) is the occupancy of element Rm(Km) and No is the total number of XY pairs.

Using this notation for the partition and the equiprobability of the X and Y axis partitions gives the

following expression for Im (X, Y), the estimate of mutual information corresponding to partition Gm.
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4 Pxyy(Rm((Km))
Im ~ M= (X )-ZPY(R Kn)oPx (Rm (Km))PY (Rm (Kin))l

Im(X,Y)=mlog4+ K Pxy(Rm(Km))logPxy(Rm(Km))
K,=1

where the first expression for I., (X, Y) was simplified using the relationships

4m

KmxyRmKml=

Px(Rm(Km)) = Py(Rm(Km)) = 1/2'M

The essential feature of the Fraser-Swinney algorithm is to take this sequential partitioning

procedure and modify it to produce an adaptive partition where the subdivision of any given element is

locally determined by the structure of the joint probability distribution Pxy on that element. This process

can be depicted by the tree structure shown in Figure 7. In this notation, R0 is the XY plane.

R0

R I (1),•-" ý ý 1R(2 (3ý) R 1(4)

R 2 (1,l) R2 (1,2) R 2(1,3) R 2 (1,4) R 2(4,1) R 2 (4,2) R 2(4,3) R 2 (4,4)

R 3 (4,2,1) R 3 (4,2,2) R 3 (4,2,3) R 3 (4,2,4)

Figure 7. Illustrative example of the adaptive partition employed by the Fraser-Swinney
algorithm. In this hypothetical example, the substructure of elements R1 (2) and R 1 (3) is
approximately uniform and these elements are, therefore, not partitioned. Elements
R1 (1), R1 (4) and R 2 (4,2) are partitioned into sub-elements because they meet the

criterion for the presence of smaller scale structure.

The notation for individual elements of the partition is revised to reflect this structure. As before,

each iteration of the partition is effected by a binary equiprobable division of the X and Y axes of an
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element. In tree notation, an individual element Rm in the partition Gm is identified by an m-tuple

Km = (kl,k 2 ..... kin), Rm(Km).

A finer partition is used in areas of the XY plane where Pxy has nonuniform structure. For the

hypothetical example in the diagram, PxY is deemed to be approximately uniform on R1 (2) and R 1 (3).

The partitioning terminates with these elements. In contrast, R1 (1) and R1 (4) have locally nonuniform

joint distributions and are partitioned. In this example, partitioning terminates at the G2 level with the

exception of element R 2 (4,2), which has a nonuniform joint distribution and is partitioned into four G3

elements, R 3 (4,2,1) through R 3 (4,2,4). As previously stated, the partitioning continues until the joint

distribution PxY is approximately uniform. A justification for using the uniformity of PxY as the

criterion for terminating the partitioning process can be established by examining the special case where

PxY is exactly uniform on Rm(Km), where Km = (k1,k 2 ,... k) is the vector that identifies an element

of the order-m partition. Pxy is said to be exactly uniform on Rm(Km) if PxY values on the subdivision

Rm+i(Krl) to Rm+l(Km, 4 ) are equal. For the case of an exactly uniform partition on Rm(Km) we

have the following:

Pxy (Rm+l (Km,l)) = Pxy (Rm+l (Km ,2)) = Px (Rm+l (Km,3)) = Pxy (Rm+l (Km,4))

Let Im(Rm(Km)) denote the contribution of element Rm(Km) to mutual information. For the general

case, we have

Im (Rm (Km)) = Pxy (Rm (KM)) log{ PXY (Rm (Km))
ý (R m (Km))PY (R m (Km))

where by construction PX(Rm(Km)) =Py(Rm(Km)) =1/2m. Im+1(Rm(Km,j)) is defined analogously

on each of the four subdivisions of Rm (Km). Using the equiprobability of the partition gives

Px (Rm+I (Kmn, j)) = PY (Rm+i (Kmr, j)) = 1 / 2m+l. The definition of the joint probability distribution gives

Pxy (Rm+I (Km, j)) = N(Rm+I (Kin, j) / N0

where by construction of the partitioning process

4
N(Rm (Kim)) = L N(R m+l (Km, j))

j=I

These relationships are generically valid. However, for the special case where Pxy is exactly uniform on

Rm (Kim) it can additionally be shown that
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4
Im (Rm (Km)) = Im+ (Rm+ (K, j))

j=1

Thus, in the case where Pxy is exactly uniform on Rm(Kn), dividing the partition element into four

subdivisions will have no effect on the contribution to mutual information obtained from that element.

Terminating the partitioning process at level Gm is therefore justified in this case. The qualifying phrase

"from that element" is crucial to our understanding of the algorithm. If the uniformity condition were not

met, the equality expressed in the immediately preceding equation would not be obtained. As a practical

matter, however, it is necessary to establish a criterion that can be used to terminate the partitioning

process for some specific element Rm(Ki) when PxY is nearly, but not exactly, uniform on that

element. In their paper, Fraser and Swinney (1986) construct a test for uniformity that uses a X2 test to

examine structure on both the m+l and m+2 generation partition of Rm (K__). Let N = N(Rm (Km))

denote the number of XY pairs in element Rm (Km). Using analogous notation for the subdivisions, let

ai = N(Rm+1 (Km,i)) and let bij = N(Rm+2 (Kn, i, j)). By the Fraser and Swinney criterion, Pxy will be

deemed to be effectively uniform on Rm (Km) and the partitioning process will be terminated on that

element if both 23 < 1.547 and X15 < 1.287, where

X3 = {-( i=j(ai -N/4)2}16 =1 4

X15 _22 N =_E1(bij-N/4)2

It should be noted that while the Fraser-Swinney algorithm uses a X 2 criterion to control

subdivisions of the XY plane locally, it does not, in contrast that the algorithm of the previous section,

provide a global statistical assessment of an I(X,Y) calculation which includes the probability of the null

hypothesis of statistical independence. The code implementing their algorithm distributed by Fraser and

Swinney departs from the partition termination criterion outlined in the text of their paper. In their code,

the probe for structure is conducted at only one sublevel and the partitioning process is terminated if

2
X3 < 1.547.

Results obtained when our implementation of the Fraser-Swinney algorithm with a single-level

partition termination criterion of X3 < 1.547 was applied to the R~ssler data of Figure 3 are shown in
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Figure 8. In our implementation, as in the case of the Fraser-Swinney code, the length of data sets X and

Y must be a power of two. Visual comparison of the results obtained with the Fraser-Swinney algorithm

and NData = 65,536 (Figure 8) with the results obtained with the algorithm of Section IV. and

NData = 100,000 suggest that similar results were obtained. This point is emphasized in Figure 9 which

shows that superposition of the results obtained when NData = 65,536 for both algorithms. The values of

lag corresponding to the first minimum of the mutual information versus lag function obtained with the

two algorithms are either equal or differ by one.
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Figure 8. Mutual information as a function of lag using the R6ssler data of Figure 3
Mutual information was calculated using the Fraser-Swinney algorithm when
ND = 65,536. Viewed at Lag=8, the curves from the x, y and z variables have the top-
down order of x to z to y.
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Figure 9. Direct comparison of results obtained with the algorithm of Section IV. and the
Fraser-Swinney algorithm using R~issler data of Figure 3. ND = 65,536. For those values
of lag where the results of the two algorithms differ, the results of the algorithm of
Section IV. are below the results obtained with the Fraser-Swinney algorithm

We now have two candidate procedures for calculating I(X,Y), the Fraser-Swinney algorithm and

the adaptive partition algorithm presented in Section IV. A procedure for comparing the two methods is

constructed in the next section.

VI. Comparing algorithms

In the previous sections, two procedures for computing mutual information were presented. They

are compared in this section. Two properties, accuracy and speed, are examined. A comparison of

accuracy requires example cases where the true value of mutual information is known to a high accuracy.

This can be provided by jointly Gaussian data sets. Two data sets are said to be jointly Gaussian if their

joint probability density function centered at (mx , my) has the form
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PXY (x, y) 2)1 / x F x -m X 2 2rr X-m X ~Y _my + rY -_M )21l
27cyxa(Ir 21 .') -mCx 2r X-mx+PyXy-27rcYxoy(l r2)11 2 exI)k 3 • I' Ify

mx and aY are the mean and standard deviation of time series {X}. my and ay are defined analogously

for {Y}, and r is the cross-correlation coefficient between {X} and {Y}. For the case of jointly Gaussian

data sets, the mutual information is analytically related to the correlation coefficient by

I(X,Y) = -0.5 log(l -r 2)

(Mars and Lopes da Silva, 1987). A derivation of the relationship is given in Appendix 2. The

construction of a procedure for generating jointly Gaussian data sets with a specified correlation

coefficient is also presented in that appendix.

Mutual information estimates obtained with the algorithm of Section IV and with the Fraser-

Swinney algorithm are compared against -. 5 log(1 - r 2 ) for the case of jointly distributed Gaussian data

in Figure 9. Ninety nine values of r, uniformly distributed on (-1,1) were used in these calculations. For

each value of r, one hundred jointly distributed {X}, {Y} data set pairs of length 8,192 were generated.

The average value of mutual information for these pairs was determined using both algorithms. Multiple

variants of each algorithm were used. The irregular I(X,Y) versus r function seen in Figure 9 was

produced using the Fraser-Swinney algorithm when the sub-partitioning process was terminated with the

criterion X3 < 1.547. With this criterion, an element of the partition is subdivided if the probability of

nonuniform substructure is greater than 27%. This is the criterion implemented in their code. Calculations

were also performed using X3 < 5.000. This criterion results in the subdivision of an element of the

partition only if the probability of nonuniform substructure is at least 80%. In this case, the results were

much closer to -0.5 log(1 - r 2). Three variants of the algorithm constructed in Section IV were used. In

the first instance, the number of elements in the partition were chosen so that Exy (i, j) > 5 for all

elements. Recall that Exy(i,j) is the expected occupancy in partition element (ij) given the null

hypothesis of statistical independence; Exy (i, j) = NDPX (i)PY (j) where ND is the number of elements

in the time series {X} and {Y}. Calculations also were performed with the Section IV algorithm with

Exy (i, j) >_ 10 and with Exy (i, j) _> 15. In the case of the Section IV algorithm, the value I(X,Y)=0 is

returned whenever the null hypothesis of statistical independence is not rejected with a confidence level

of at least 95%. This convention accounts for the transition to I(X,Y)=0 in the vicinity of r=0 for I(X,Y)
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functions obtained with this algorithm. Viewed at r=.2 the top-down ordering of the I(X,Y) versus r

functions is (i.) Fraser-Swinney algorithm with X3 < 1.547, (ii.) the algorithm of Section IV with

Exy (i, j) > 5, (iii.) the algorithm of Section IV with Exv (i, j) _> 10, (iv.) the algorithm of Section IV with

Exy (i,j) _15, (v.) the Fraser-Swinney algorithm with X3 <5.000, (vi.) the analytical solution

- 0.5 log(1 - r 2 ). The greatest numerical value of I(X,Y) is obtained with the Fraser-Swinney algorithm

with a subdivision criterion of X 2 < 1.547 which results in subdivisions whenever the probability of

nonuniform substructure exceeds 27%. This produces the greatest value of I(X,Y) because the

comparatively tolerant criterion of 27% introduces a numerical indication of small scale structure in the

data (and hence a greater value of mutual information) that may not be present. With the more demanding

criterion of X2 <5.000, a subdivision is introduced only if there is at least an 80% probability of

nonuniform substructure. With this criterion there is less divergence between the algorithm-estimated

value of mutual information and the analytically computed value of - 0.5 log(l - r 2 ).
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Figure 10. Comparing the Fraser-Swinney algorithm, the algorithm of Section IV. and

-. 5 log(l - r 2 ) for jointly distributed Gaussian data. Ninety-nine values of correlation r

uniformly distributed on (-1,1) were used. ND = 8,192. For each value of r, one hundred

{X}, {Y} data set pairs were generated. The algorithm's average value of mutual
information is displayed. Viewed at r=.2 the top-down ordering of the I(X,Y) versus r

functions is (i.) Fraser-Swinney algorithm with X3 < 1.547, (ii.) the algorithm of Section

IV. with Exy(i,j)_>5, (iii.) the algorithm of Section IV. with Exy(i,j) >10, (iv.) the

algorithm of Section IV. with Exv(i,j)>15, (v.) the Fraser-Swinney algorithm with

X3 < 5.000, (vi.) the analytical solution - 0.5 log(1- r 2 )

Following Hamilton (1964), the following error measure was calculated.

99
1 (I(x, y) Analytical - I(X, y)Algorithm )2

ERROR -=1

S(I(x, Y nltcl)

where I(X, y)Analytical denotes the value obtained using - .5 log(1 - r 2 ) . The results are shown in the next

table. It is seen that the magnitude of the error is low with both algorithms.
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Table 2. Average Normalized Error in the Estimation of Mutual Information

Algorithm ERROR

Algorithm of Section IV 1.91 X 10-3
E XY (i, j) > 5

Algorithm of Section IV 1.55 x 10.-
Exy (i,j) Ž 10

Algorithm of Section IV 3.15 X 10- 3

E Xy (i, j) > 15
Fraser-Swinney Algorithm 2.48 x 10-1

X2 < 1.547

Fraser-Swinney Algorithm 0.97 X 10-3
2

X3 < 5.000

In addition to providing an explicit assessment of the probability of the null hypothesis of

statistical independence, the algorithm of Section IV offers an additional advantage over the Fraser-

Swinney algorithm; it is much faster. Comparison of computation times with data sets of different lengths

is given in Table 3. Both programs were run in Matlab 6.5.0 (R13) on a Pentium 4 processor running at

2.53 GHz. The computation times of the algorithm of Section IV are typically on the order of .5% of the

times required by the Fraser-Swinney Algorithm. In addition to being more accurate than the X2 < 1.547

criterion, the X3 < 5.000 algorithm is faster because it introduces fewer subdivisions.

Table 3. Comparative Computation Times for Different Algorithms

Time Time Time
N Data Algorithm of Section IV Fraser-Swinney Algorithm Fraser-Swinney Algorithm

(seconds) )2 =1.547 (seconds) X3 = 5.00 (seconds)

4096 1.3 266.2 185.2
8192 2.7 544.0 392.4

16384 5.0 1169.5 851.0
32768 9.3 2549.5 1898.5
65536 24.1 5940.5 4533.5

An approximate understanding of the sensitivity of the two algorithms to data set size can be

obtained by examining the results presented in Figure 11. That diagram shows the mutual information

versus lag functions obtained from a single data set generated by the R6ssler equations (x variable data).
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As already seen in Figure 8, the results obtained when ND = 65536 are almost identical. More

substantive differences are observed, however, when smaller data sets are used. When ND is 4096 and

8192, the algorithm of Section IV produces output that is slightly less than, but largely parallel to, the

results obtained when ND = 65536. For this algorithm, the value of Lag giving the first minimum of

mutual information was the same for all values of ND tested. In contrast, when ND = 4096 and 8192,

the Fraser-Swinney algorithm produces mutual information versus lag functions that present structures

that are lost when more data are incorporated into the computations. In some instances, these structures

can alter the identification of the lag giving the minimum value of mutual information.
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Figure 11. Mutual Information versus Lag for Data Sets of Different Sizes. Mutual
information versus lag was computed using both algorithms for ND = 4096, 8192,
16384, 32768 and 65536. The data were generated by the R6ssler equations, and x-
variable output was used in the calculations. Functions calculated with ND = 65536 are

at the top of each set of curves. Functions calculated with ND = 4096 are at the bottom
of each set of curves.
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VII. Discussion

The Fraser-Swinney algorithm with the X3 < 5.000 criterion out-performs that algorithm when

X3 < 1.547 is used both in terms of accuracy (Table 2) and speed (Table 3). Given a dichotomous choice

between these two options, the X3 < 5.000 variant would be preferable. A comparison of the Fraser-

Swinney algorithm with the x3 < 5.000 criterion against the algorithm of Section IV leads to the

following conclusions. First, the algorithm of Section IV has a significant advantage over the Fraser-

Swinney algorithm in providing a global test of the statistical independence null hypothesis. The Fraser-

Swinney algorithm uses a X2 test locally to implement the partitioning protocol. It does not, however,

return an assessment of the statistical independence of X and Y. Second, while the Fraser-Swinney

algorithm is more accurate with data sets where ND = 8192 (Table 2), the results of Figure 11 suggest

that the Fraser-Swinney algorithm requires large data sets even when the X2 < 5.000 criterion is used.

When smaller data sets are used the Fraser-Swinney algorithm presents structures that disappear when

more data becomes available. If the object of the calculation is to use I(xi, Xi+Lag) functions to find the

appropriate Lag for embedding, then these local minima could give misleading results. Third, the

algorithm of Section IV requires about .5% of the calculation time required by the Fraser-Swinney

algorithm.

Limitations of this study should be noted. Additional algorithms could be considered. Following

Silverman (1986), Moon, et al. (1995) have used kernel density estimators to calculate probability

densities. They argue that the resulting algorithm outperforms the Fraser-Swinney algorithm. Moon, et al.

also suggest that their algorithm can be improved by using K-d trees to partition the data. Caution must be

exercised when evaluating this suggestion. Our exploratory calculations have shown that K-d tree

partitions can be very sensitive to initial conditions. This sensitivity is addressed by Bradley and Fayyad

(1998) who published a procedure for computing initial conditions based on a procedure for estimating

the modes of a distribution.

Instead of partitioning phase space as is done in the algorithms discussed above, Pawelzik and

Schuster (1987) used the first order correlation integral to calculate probability densities and entropies.

These entropies are then used to calculate mutual information. We consider here application of the

technique to embedded time series data, Xk= (Xk, Xk+LagXk+2Lag, . Xk+(m1l)Lag) and
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Yk=(Yk, Yk+Lag, Yk+2Lag. Yk+(m-l)Lag) k = 1, ... , N-m+l. Application to scalar data is trivially

obtained by taking the embedding dimension, m, to be one for X and Y, and thus dimension two for the

joint space. The density of X in the neighborhood of Xk is approximated by the first order correlation

integral,

PXk (r) 10( r-IXj-XkI )Ipx N(r -Nv_1 j~k

where 9 is the Heaviside function, Nv is the number of embedding vectors, and r is the neighborhood

size being considered. This density differs from that used earlier because it counts the number of points in

possibly overlapping neighborhoods. The densities used in the algorithms discussed earlier involved non-

overlapping neighborhoods created by the partitioning process. This leads to a slightly different

expression for the entropy which, in this case, is given by

1 N
H(X, r) N - L- In Pxk (r)

V k=1

In some implementations, finite sample corrections due to Grassberger are included (Grassberger, 1988).

The entropies of the Y data as well as the joint entropy are calculated similarly, and these are used to

obtain the mutual information from the relation I(X,Y)=H(X)+H(Y)-H(X,Y).

Quian Quiroga et al., (2002) used the Pawelzik-Schuster algorithm with the Grassberger

corrections in a study of synchronization of rat electrocorticograms. They studied three multichannel

ECoG records in a rat model of genetic absence epilepsy and compared activity between left and right

hemispheres. (The data they analyzed are available at www.vis.caltech.edu/-rodri). The first record, their

example A, was obtained in an interictal condition and the remaining two, their examples B and C, were

recorded during seizures and presented repetitive spike discharges. In addition to mutual information, the

synchronization measures examined included nonlinear interdependencies, phase synchronizations, cross

correlation, and the coherence function. They concluded that except for mutual information their linear

and nonlinear measures provided qualitatively similar results. Namely, interhemispheric synchronization

was highest in example B, followed by A and then C. The authors felt that the small number of data

points (N=1000) was responsible for the failure of mutual information to provide robust estimates of

interhemispheric synchronization.

These data were re-analyzed by Duckrow and Albano (2003) using a modified Fraser-Swinney

algorithm. The data were embedded and interleaved as described in Appendix 3 and the resulting binary

representations were used as inputs in the Fraser Swinney algorithm. Using embedding dimensions from
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1 to 10 and Lags from 1 to 30, the results consistently showed the B > A > C ranking that Quian Quiroga

et al. found using other measures of synchronization. Results obtained by Duckrow and Albano using

these data and a uniform partition algorithm showed a behavior similar to that found by Quian Quiroga

when they used the Pawelzik-Schuster algorithm. The expected ranking of B >A > C was seen only for

embedding dimensions 1 and 2, and the value of mutual information increased with increasing embedding

dimension (Figure 12). This is likely a consequence of small data set size. An examination of the uniform

partition algorithm indicates why this should be the case. If one considers X and Y as N uniformly

distributed random numbers, the individual and joint probabilities would be Px = 1 / N, Py = 1 / N, and

PxY = 1/N 2 . The resulting mutual information would be zero. However, when sparse data are scattered

into a large multidimensional embedding space it becomes unlikely that more than one point is present in

any one histogram element. In this case the joint probability is closer to 1/N than 1/N 2. The resulting

mutual information would be log(N). When a fixed bin-width histogram method was applied to sets of

N=1000 embedded uniformly distributed random numbers, Duckrow and Albano found that the resulting

average mutual information value rose quickly with increasing embedding dimension and rapidly

approached log(N), as shown by the dash-dot line in Fig. 12.

Fixed bin-width histogram method
10

- example 
A

9- example B
----. example C 7

8 - - random data

I 7 7
7 /

6/-

12 3 4 5
Embedding dimension

Figure 12. Average mutual information at increasing embedding dimension with fixed Lag =10 (From

Duckrow and Albano, 2003).

In contrast, Albano and Duckrow found that the average mutual information of same the random

numbers calculated with the Fraser-Swinney algorithm had a median value of 1.1 x 1 0- and did not

exceed 0.02. Interleaving data embedded in mn dimensions represents in-dimensional vectors as scalars

34



and reduces the calculation of the joint probability in a 2m-dimensional space to a two-dimensional

calculation. Increasing the embedding dimension does not make the embedded points any sparser in the

reduced space, and, therefore, calculation of the mutual information proceeds in the same manner as for

calculation for unembedded data. One does not get the artificial increase in the calculated mutual

information that results from scattering a limited number of points in spaces of ever-increasing

dimensions observed with uniform partition algorithms. In subsequent work, Quian Quiroga et al. (2003)

repeated their calculations using interleaved embedded data as inputs to the Pawelzik-Schuster algorithm

and confirmed the B > A > C ranking of mutual information reported by Albano and Duckrow. In this

contribution, they suggest that a more precise method for calculating the mutual information may be one

that estimates probability densities using k-th nearest neighbor distances rather than the number of

neighbors in neighborhoods of fixed size.

Yet another approach to calculating mutual information has been published by Kilminster, et al.

(2002) who have shown that the Radon transform can be used to estimate joint probability density

functions which can then be used to estimate mutual information. They argue that, in contrast with

standard methods, this procedure preserves fractal structure. The Kilminster et al. and the Moon, et al.

algorithms could be compared against the Fraser-Swinney algorithm and the algorithm of Section IV in

an expanded study.
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Appendix 1. Mutual Information: Definition and Mathematical Characterization

A. Define a system, {X1 , x 2 ...... X } {Px (1),Px (2) ..... Px(Nx)}

B. Define the information in the i-th symbol, I(i)

C. Define the entropy of a system, H(X)

D. Define the joint probability distribution, Pxy (i, j)

E. Define the conditional probability distribution, Pxjy (i, j)

F. Define the joint entropy, H(X,Y)

G. Define the conditional entropy H(XIY)

H. Define mutual information I(X,Y)

A. Define a system, {X1,X2, ..... XNx }, {Px (1),Px(2) ..... Px(Nx)}

X is a system consisting of a discrete set of possible symbols, {x1,x 2 ,....... XNx }. The set of

possible symbols, which is often referred to as the alphabet, is to be distinguished from an output

sequence, or message, generated by system X. An output sequence is an ordered sequence of symbols

drawn from the symbol set. Throughout we use Nx to denote the number of elements in the symbol set

and ND, where 'D' denotes data, to denote the length of a message. The associated probabilities of each

element of the symbol set is given by {Px (1), Px (2) ..... Px (Nx)}, where probabilities have the property

NX

-- Px (i) = 1
1=1

In many of the applications implemented here, symbol xi denotes the presence of an event in the i-th

element of a histogram that is composed of Nx bins. In this context, Px (i) is the occupation probability

of the i-th bin.

B. Define the information in a symbol, I(i)

The information content of the i-th symbol is

1(i) = -log 2 Px (i)

Throughout, all logarithms are computed in base 2, and the resulting values are reported in bits. (In some

texts the natural logarithm is used and the reported units are "nats.") Suppose the probability of a symbol

is 1. In this case, nothing is learned by observing it. The corresponding information is - log 2 (1) = 0. As a

symbol become increasingly improbable, its associated information increases.
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C. Define the entropy of a system, H(X)

Information is a property of a symbol. In contrast, entropy is a property of a system. Entropy,

H(X), is the average amount of information gained from an observation of x. Restated, H(X) is the

average uncertainty in x prior to its observation.

NX

H(X) = I Px (i)I(i)
i=1

NX

H(X) = -Px(i)log 2 Px(i)
i=1

This can be generalized to a continuous variable

H(X) = -fPx(x) log 2 Px(x)dx

In the discrete case, suppose an observation can be in one of sixty-four bins. Thus there are sixty-four

possible symbols, {X,. ..... x 64}. Suppose further that the probability of any given symbol is the same,

P(i) = 1/64 for all i.

64 1 i
H(X) =- Px(i)log 2 Px(i) = -646 4 log 2  = 1og 202 6 = 6 bits

Similarly, if there were 128 equiprobable symbols, H(X)=7 bits.

For the general case, using the convexity of xlogx, it can be shown that the maximum value of

entropy is obtained when all symbols have the same probability. Additionally, using a series expansion of

logx, it can be shown that

Jim xlogx 0
x-->0

Therefore, as previously asserted, if Px (j) = 1 and Px (k) = 0 for all k • j, then H(X)=O.

D. Define the joint probability distribution, PXy (i, j)

Consider two systems, X with the output sequence {x1, x 2 ...... XND } and system Y presenting

the message {Y1 Y2 ..... YND }• When defining a joint probability distribution, one must emphasize the

previously made distinction between Nx the number of different symbols that can be presented by

system X, Ny the number of distinct symbols that can be presented by system Y, and ND the number of

observed (x,y) pairs. As before, the independent probability of each symbol of system X is denoted by
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{Px (1), Px (2) ..... Px(Nx)}. Similarly, the independent probability distribution of system Y is

{Py (1), Py (2) ..... Py (N¥ )}. The joint probability distribution Pxy (i, j) is the probability that an (x,y)

pair consists of the i-th system X symbol and the j-th system Y symbol. It should be noted that

PxY (i, j) = Px (i)Py (j) if and only if X and Y are independent.

Lemma: Relationship between joint probability distributions and single variable distributions

Ny
Px (i) I PxY (i, j)

j=l

Demonstration:

By summing over all possible y values, the probability of y, whatever value it might be, is 1. Therefore

the remaining value in the sum is the probability of the system X symbol.

E. Define the conditional probability distribution, Pxjy (i, j)

Given systems X and Y defined above, the conditional probability distribution is denoted by

PNiY. Pxly(i,j) is the probability that X=xi given that it is already known that Y=yj. The

relationship between the joint probability distribution and the conditional probability distribution is

established by the following lemma.

Lemma: The relationship between the conditional probability distribution and joint probability

distribution is given by:

PxY (i, j) = Px1Y (i, j)Py (j)

Demonstration:

Py (j) is the probability that Y = yj. Pxy (i, j) is the probability that X = xi if it is already known that

Y = yj. Therefore the product of these probabilities is the probability that both X = xi and Y = yj,

which by definition is PxY (i, j).

If X and Y are independent, then PxY (i, j) = Px (i)Py (j), and Px (i) = Px1y (i, j). That is, if X and

Y are independent, then the probability that X = xi is determined solely by system X.

F. Define the joint entropy, H(X,Y)

Given X and Y systems as previously defined, the joint entropy is defined as:
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NX Ny

H(X,Y) = -EIPxy (i, j)log2 PXY (i,j)
i=1 j=1

H(X,Y) is the average amount of information gained by observing an (x,y) pair.

Lemma: The joint entropy of a system with itself is given by

H(X,X)=H(X)

Demonstration:

By definition

NX Ny

H(X, Y) = - PxY (i, j) log 2 Pxy (i, j)
i=1 j=1

If Y=X, then Pxy (i, j) = 8 ijPx (i) where 50 is Kronecker's delta

NX Ny

H(X, Y) = -E iJPx (i)log 2 8ijPx (i)
i=1 j=1

lim zlogz = 0
z---•

Hence

Nx

H(XX) = - Px (i) log 2 Px(i) = H(X)
i=1

Lemma: The joint entropy function is symmetric, that is

H(X,Y)=H(Y,X)

Demonstration:

By definition

NX Ny

H(X,Y) = -EYPxy (i,j)log 2 PXY (i, j)
i=l j=l

The joint probability distribution is not a conditional probability distribution; Pxy (i, j)= Pyx (, i)

Therefore:

H(X,Y)=H(Y,X)

G. Define the conditional entropy H(XIY)

For a given value of Y, say Y = yj, the conditional entropy is defined as

Nx

H(X j J) = -E Px1Y (i, j) log 2 Px1Y (i, j)
i=l
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H(X Ij) is the average amount of information obtained by observing X when Y = yj. H(XJY), the

average conditional entropy, is H(X I j) averaged over all possible y's.

Ny

H(X I Y) = Py (j)H(X I j)
j=l

H(XIY) is the average information obtained by observing X after Y is known. Said another way, H(XIY)

is the average number of additional bits required to specify X if Y is known.

Lemma: Relationship between conditional entropy and joint entropy is given by

H(XIY)=H(X,Y)-H(Y)

Demonstration:

By definition
Ny

H(X I Y) I Py (j)H(X I j)
j=I

where

NX

H(X I j) = -Z Px1Y (i, j) log 2 PxJY (i, j)
i=l

It has been demonstrated previously that

PxIv (i, j)Py (j) = Pxy (i, j)

Therefore

H(X I Y) = ZPy (j)(-1)Z PXY (i, J)log 2 PxY (i, J)
j=l i=l PY (J) PY (J)

NX Ny Pxy (i, J)
H(X I Y) - 1 PxY (i, j) 1og 2  ii=1 j=l PY (J)

Nx Ny Nx Ny

H(X I Y) =-YYPxY(i,j)log2 PXY(i,j) + IIPxy(i,j)log 2 Py(j)
i=1 j=1 i=1 j=1

The first term on the right hand side is the joint entropy.
Ny Nx

H(X I Y) = H(X,Y) + I E PxY (i'j J)l92 PY(J)

j=I i=1

It was previously shown that
Nx
Y, PxY (1, j) = Py (j)

i=l
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Hence

Ny

H(X I Y) = H(X, Y) + I PY (j) log 2 P(j)
j=1

H(XIY)=H(X,Y)-H(Y)

H. Define mutual information I(X,Y)

The average amount of information obtained by observing X can be conceptualized as consisting

of two components.

Average amount of information obtained by an observation of X

= Average amount of information about X obtained by observing Y

+ Average amount of information about X obtained by observing X after Y is known

Two of these elements have already been defined.

H(X) = Average amount of information obtained by an observation of X

H(XIY) = Average amount of information about X obtained by observing X after Y is known

The third element is defined as the mutual information

I(X,Y) = Average amount of information about X obtained by observing Y

H(X) = I(X,Y)+H(XjY)

I(X,Y)=H(X)-H(XIY)

Shannon (1948) used the phrase "rate of transmission" for this quantity

Properties of Mutual Information

Lemma 1. H(X)=I(X,X), referred to as the self-information

Lemma 2. I(X,Y)=H(X)+H(Y)-H(X,Y), note that this is the joint entropy, not the conditional entropy

Lemma 3. I(X,Y)=I(Y,X), mutual information is symmetric

Lemma 4. I(X,Y)=H(Y)-H(YIX)
Nx Ny "i 'o•PxY 0i, j_)

Lemma 5. I(X, Y) I Z PxY 6,j) g21 This is the expression that will be used in most ofL Px(i)Py (j)Ji=l j=l PX O 0

the computations.

Lemma 6. I(X,Y)=O if X and Y are independent
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Lemma 1. The relationship between entropy H(X) and self-information I(X,X) is given by

H(X)=I(X,X)

Demonstration:

By definition

I(X,Y)=H(X)-H(XIY)

It was previously demonstrated that

H(XIY)=H(X,Y)-H(Y), and

H(X,X)=H(X)

Hence

I(X,X) = H(X)-H(XIX)

= H(X)- {H(X,X)-H(X)}

= H(X)- {H(X)-H(X)}

= H(X)

Lemma 2. Mutual information I(X,Y) can be expressed in terms of entropies H(X), H(Y) and joint

entropy H(X,Y) by
I(X,Y)=H(X)+H(Y)-H(X,Y)

Demonstration:

By definition

I(X,Y)=H(X)-H(XIY)

From a previous result

H(XIY)=H(X,Y)-H(Y)

Therefore:

I(X,Y)=H(X)+H(Y)-H(X,Y)

Lemma 3. Mutual information is symmetrical, that is

I(X,Y)=I(Y,X)

Demonstration:

By Lemma 2,

I(X,Y)=H(X)+H(Y)-H(X,Y)

Therefore:
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I(Y,X)=H(Y)+H(X)-H(Y,X)

It was previously shown that the joint entropy is symmetric. This gives

I(Y,X)=H(Y)+H(X)-H(X,Y)=I(X,Y)

Lemma 4. The relationship between mutual information and joint entropy is given by

I(X,Y)=H(Y)-H(YIX)

By Lemma 2, the left hand side of the equation is:

LHS=H(X)+H(Y)-H(X,Y)

By a previous lemma,

H(YIX)=H(Y,X)-H(X)

Using this and the symmetry of the joint entropy gives the following expression for the right hand side of

the equation

RHS=H(Y)-H(HIX)

=H(Y)- {H(X,Y)-H(X)}

=H(X)+H(Y)-H(X,Y)=I(X,Y)

Lemma 5. Computational Expression: Mutual information can be expressed in terms of probability and

joint probability distributions by

Nx Ny PXY (i, j)
I(X, Y) = E Pxy (i, j) log 2

i=1 j=1 PX (iPy (j)

Demonstration:

Expanding the right hand side of this expression gives:

Nx Ny
RHS= I YPxy (i, j) 10g2 Py (i, j)

i=1 j=1

Nx Ny
I I - PxY 0i, J) 10g2 Px~i

i=1 j=l

Nx Ny

I Pxy (i, j) log 2 Py (j)
i=1 j=1

Using the definition of the joint entropy and rearranging terms gives

RHS=H(X,Y)

Nx Ny

- 10og 2 Px (i) PXy (i, j)
i=1 j=l
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Ny NX

- Zlog2 Py (j)Z xy (i, J)
j=1 i=1

It was previously argued that

Ny

Px (i) = I PxY (i, j)
j=1

NX

PY (j) = PxY (i, j)
i=l

Therefore

NX Ny

RHS -H(X, Y) - Z Px (i) log 2 Px (i) - I PY (j) log 2 PY (j)
i=1 j=1

RHS=H(X)+H(Y)-H(X,Y)=I(X,Y)

Lemma 6. If X and Y are statistically independent, then I(X,Y)=O.

Demonstration:

It has previously been argued that PxY (i, j) = Px (i)Py (j) if X and Y are statistically independent. From

Lemma 5, we have

Nx Ny (x 'j
I(X, Y) = I y(i,)log2  ' (i

i=1 j=I (PX ()Py (j)J

If X and Y are independent, the argument of log 2 is identically one, and I(X,Y)=O.
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Appendix 2. Jointly Gaussian data sets and the mutual information of jointly Gaussian data set

pairs

We construct here a procedure for generating jointly Gaussian data sets {Y1 } and {y 2 } from two

independent Gaussian data sets {X1} and {X21 . This is followed by a demonstration showing that the

mutual information of two jointly Gaussian data sets with a cross-correlation coefficient r is

-0.5 log(l -r 2 ).

For simplicity of presentation we consider the special case of data sets that have zero mean and

equal variance. The procedure can be extended to the more general case. Data sets with these limitations

are, however, sufficient if the investigation is limited to comparison tests of mutual information
algorithms. Let {X1} = (Xl,X2 ...... x1) and {X} =(x2 ,x2 ,x3 ,•.X) be Gaussian distributed

with zero mean and the same variance c 2 . It is further assumed that they are uncorrelated, that is, their

cross-correlation coefficient r is equal to zero. Given the assumption of zero correlation, their joint

probability distribution is the product of their individual probability distributions.

Px1x2 (X I ,x2= 2_= 1exp{ [(xl )2 + (x 2 )2 ] /2a 21}= 1 exp { xT Z lx/2}xx 27m 2 27t1 Yx 11/2 X

where Zx is the (X1,X 2) covariance matrix.

Two data sets {Y1}= (y',y3,y ..... y') and {y 2 }= (Y2,Y,y2," ..... y2) with zero means, equal

variance a2 and cross-correlation r are jointly Gaussian if their joint probability density function is
PYI2 ( 1 y )= 1 exp TYZ_-ly/2

27t1Z 11/2 y/}

Zy is the (y 1,y 2) covariance matrix.

ZY= r21r _Y Z (1-r 2)(Y2 -_r =C ( )1-r)

Matrix A is a two-dimensional linear transformation relating {X1} and {X2}, independent Gaussian

random variables, to {Y1 } and {y 2 }, jointly distributed Gaussian variables.
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By construction
T -I =_T-_Y

_ XTx i T - 12

Using the expression for E;1 and re-expressing x in terms of Ay gives

2ix x=y TA TAy=a C2YT -I

Let A be given by

Using this representation for A and the expression for Y-1 above gives

T a 2+C ab+cd 2 -1 1 1 -ri
ab+cd b2 +d2)= Y y -- 1

Solving for b, c and d in terms of a and r gives

l a -ar+ -a 2 (1_A I -a2(1 r 2 1 -a 2 (1-r2) F

A= l (1-r 2 ) r 1-ar(1-r 2 ) a_

There are an infinity of A's that depend on the choice of a. We use here the simplest case, a=1.A r °1 A- °0
A=r -lr2  rl_1 r2 A-1( 4l- r2

In the next step, we need to establish the relationship cited in the text between mutual information

I(Y',Y 2 ) and r, the cross-correlation coefficient. In this derivation, we use the property that {Y1} and

{y 2 } are jointly distributed, have correlation r, and are related to independent Gaussian data sets {X1 }

and {X2 } by linear transformation A. The derivation begins with the integral representation for mutual

information expressed in terms of the joint and individual probability density functions. The integrals are

taken from - oo to + oo.
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1 Y I , y 2 ) lo g p - -•-p - -I-- -•I Y d y d y 2
I(YI'YI)L =1 ffy YI )Py2 (y2)j

By construction, Y1 and y 2 are jointly Gaussian. Therefore,
2) 1 -y T Y-'yy/2

PYIY2(nydyy 27a G _y 11/2 e - -

Ey is the Y1 , y 2 covariance matrix where as before equal variances are assumed.

Zy= CY2(Ir ) Ily I /2 2 (1-r 2)1/2

Yl and y2 are Gaussian distributed.

py Y )=e-(yl)2 /2cy2P 2Y2 e-(y 2 )2/2ay2

This gives the following expression for mutual information

e I 2T [)y-'y/2

1(y,y2) jje- _ logc 11/ dy'dy2

2711 )Y J illog I e-(yl) 2 /2a 2 e(y 2 )2 /2C2

ý2itaC ý27M2

Given the previously stated expression for I ,y 11/2, the expression for mutual information simplifies to

FXT- / yT Y-y/2
I(YI,Y 2) , Y , 2 log e (- dy1dy2

f JJ2lirc 2(1 -r 2 )2 log Y) /a2e(y) 2 (1 -r 2 1/2

This can be re-expressed as an integral in x1 and x2}

y=A-lx
0~x 1

Y2)=(l X)(y ~iy2)

dyldy 2 =- (x ,x 2( ) dxldx2

where the right hand side of the last equation is the absolute value of the determinant of the Jacobian of

the transformation.
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I1 0

dydy2 = r -_lr
2  dx 1dx 2 = 1-r2dxldx2

By construction y'Z y1 y= xx/ a2. This gives- e -X x 2

I(p Tx) e~~ /2a 2 lo exTx/2ar
2  d'

kj - x/ 2ic2  l eo(yl) 2 /2o2 e / 2
)2 (1-r 2)1/2 edxldx2

Taking logarithms of the exponentials gives

I(Yfr-x/2a2 f I (_xTx+(y1)2+(y2)2)_log _r21}dxldx2I7y1,y2)= ,y,2 )- log2 l2-22 - _

An expression for (y1) 2 + (y 2 ) 2 is constructed from the defining linear relationship between x's and y's.

y=A-lx

Y2)= )(Xy )=A 1  2

1Y r _(10)r2x 2- rx1 l2

(y )2 +(y 2 )2 = (xI)2 + {rxI _ l-_r 2x 2}2 = (x)) 2  2 ) -2r l-rr2 x1 x2 +(1-r 2)(x 2 )2

This expression in the integral becomes

-xT x + (y )2 + (y 2 ) 2 = _(xl) 2 _ (X 2 ) 2 + (x 1 ) 2 + r 2 (x') 2 -2r l--r 2 xlx 2 +(1 -r 2)(x 2 ) 2

=r 2 (x ) 2 -r 2 (x2 )2 -2r -r 2 xIx 2

The integral for mutual information becomes

Te-j /2o
2

'k'l'J- f je;-x 1(r 2 (xl)2 - r2 (x{2)2 _-2rýl _-2-xIx2)_ log 1 2 }dx1dx2

Consider the integral

27miT fa 1I
JJ-xTx27 rc 2  4 r2(xl)2 ~r2(x2)2)}dxldx2

The two terms are of equal magnitude and opposite sign, and the double integral is therefore equal to

zero. Similarly consider

ffef-X-/ 2  {2 -- ( 2r _ r 2 xlx2IJ}dxldx2

Each integral is of an odd function over the range - oo to + oo and is therefore equal to zero. The integral

for mutual information simplifies to
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I(y 1 , y 2) f= -JeT/2 2 { logl 1-r 2 } dx1dx2

Using

e-222= (27c)' a2C

gives

2
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Appendix 3. Binary representation of XY partitioning and generalization to embedded

data

The previous section provided details of the local adaptive partitioning used by Fraser and

Swinney to calculate mutual information. The space being partitioned is that of the joint distribution of

X = {X1,x 22,...XN} and Y = {Y1,Y2,'"YN}, a subset of the XY plane which may be considered a two-

dimensional embedding space whose elements are (xi, yi), i=1,2,....N. The following steps are used to

implement the procedure:

1. Let the number of elements of both X and Y be N = 2' (the binary logic of the algorithm requires

N=2n).

2. Rank order both X and Y with no repeated elements so that they both map to permutations of the

integers 0, 1, ... , 2V-1. To avoid repeated elements, one may assign higher ranks to numbers appearing

earlier in the series. Call these rank-ordered lists XR = {IXR,X 'x...X} and yR yR,y Y...YR). XR

and yR are equiprobable.

3. Transform the elements ofXa to binary. Since the 0 < xk < 2' -1 these binary representations have at
R ni n2 0R an-most n bits - i.e., xkR =ak- ak2 -a. Here, an-' is the most significant bit of Xk , ak the second

most significant, etc. Perform the same transformation on the elements of yR to get yR b kn-tln-2 ... bk.

4. Interleave the bits of x R and y• to get

R n n-n-2 n-2
Zk =(a-1b -'a( b( ... a~bO)(1

kk =akk ak k "'kbk). 1
R R R

The two leftmost elements of zk are the most significant bits of xk and yk , respectively, the next two
R, R) =R 54) hnuigtebnr

are the next most significant bits, etc. For example, suppose (xkY) (5,47). Then, using the binary

representations, 5 = 000101 and 47=101111, the interleaved representation of (xky•) is
R, R) =ýR = (01000,111011 1).

(Xk, Yk ) k

A crucial advantage of this representation derives from the observation that the successive bit
R, R) dmninlebdigsae

pairs provide a tree representation for the location of (xk, Yk) in the two-dimensional embedding space.

To see this, label the axes of a two-dimensional embedding space by x and y and consider the region
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0 < x, y < 25 -1. If this region is subdivided into 4 quadrants as in Figure 13a, then the bottom-left

quadrant contains all those vectors with six-bit x's whose most significant bits are 0 and with y's whose

most significant bits are also zero, the bottom-right quadrant contains all those x's whose most significant

bits are 1 and those y's whose most significant bits are 0, etc. The location of any interleaved point in this

R Rsubdivision is thus labeled by its first two elements; the (Xk, Yk ) in our example is in quadrant 01. If this

quadrant is again subdivided into four, the next two bits of zk specify its location in the new subdivision

(Figure 13b), and so on.

26 _ 1 26 -1
01 11 0101 0111

y 25
00 10 0100 0110

2 5

0 25 26 -1 025

X X

(a) (b)

Figure 13. (a) Partition of 0 < x,y < 26_1 into 4 quadrants. (b) Partition of quadrant 01 (upper left) into
four sub-quadrants.

The technique of interleaving may also be used to implement time-delay embedding. Consider the

m-dimensional embedding of X with a specified lag

X = (Xk, Xk+Lag, Xk+2Lg. Xk+(m4l)Lag)
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Using the notation of Equation. (1), the m-dimensional embedding vector, Xk, may be represented as

X n-I n-i n-i n-2an-2 n-2 -. 0 0(

ak+Lag k+(k-I)LagJ a k k+Lag *"ak+(k-1)Lag (a k ak+Lag ak+(m-1)Lag) (2)

a number that uniquely represents Xk. A similar embedding and interleaving of Y gives

Y = (Yk, Yk+Lag, Yk+2Lg, ... Yk+(m-1)Lag) and

n-ibn-i n-I n-2 n-2 n-2 bb0 0Yk > Vk k bk+t -b 1 kag b "k"b+)Lag)(b b b.kLag) . kk+Lag "k+(m-I)Lag)

The interleaved sets, {Uk} and {vk}, each consists of 2' numbers, each number specified by nxm bits. To

calculate the mutual information ofXand Y {Uk} and {vk} are converted to decimal and used as inputs in

the Fraser-Swinney algorithm.
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